

VITICUSGROUP[™] WVC ANNUAL CONFERENCE MARCH 2 - 5, 2025 | LAS VEGAS, NV

The AKI Patient: All the Critical Details

Nancy A. Sanders, DVM DACVIM (SAIM), DACVECC

Financial Disclosure

I have a direct relationship with IDEXX, but it **will not** influence the nature of my presentation.

The information contained herein is intended to provide general guidance only. Diagnosis, treatment, and monitoring should be patient specific and is \mathbb{C} the responsibility of the veterinarian providing primary care.

Learning Objectives

- 1 Compare and contrast the significance of acute and active kidney injury vs. chronic kidney disease
- 2 Review biomarkers of acute and active kidney injury, including urinary cystatin B; familiarize with educational resources
- 3 Explain the cellular sources for cystatin B and the significance of elevated urinary concentrations
- 4 Apply acute kidney injury concepts to clinical cases

Timeline of kidney biomarkers

Acute kidney injury (AKI) vs. chronic kidney disease (CKD): Why do we care?

AKI	CKD
 + Early detection to prevent progression 	 + Early detection/intervention in attempt to slow progression
 Institute supportive care and specific therapy when possible 	 Institute dietary therapy, supportive care
 Determine resolution or progression 	 Determine likelihood of rapid progression
 Short-term financial and emotional investments are intense 	+ Long-term financial, emotional, and time commitments
 Prolonged hospitalization: associated with higher morbidity and mortality 	 + Usually outpatient therapy; when hospitalization is required, usually associated with low morbidity and mortality

Terminology can be confusing; ARF, AKI, ATI, ATN

J. Himmelfarb, T.A. Ikizler, Acute kidney injury: changing lexicography, definitions, and epidemiology, Kidney International, Volume 71, Issue 10,2007, Pages 971-976, ISSN 0085-2538, https://doi.org/10.1038/si.ki.5002224. Kellum, John A., Claudio Ronco, and Rinaldo Bellomo. "Conceptual advances and evolving terminology in acute kidney disease." *Nature Reviews Nephrology* 17.7 (2021): 493-502.

https://www.idexx.com/en/veterinary/kidney-health/

Home > IDEXX kidney health solutions

IDEXX kidney health solutions

Kidney function is a vital window into your patient's overall health, but you can't manage what you can't see. Our suite of tests and technologies sheds light on your patient's kidney health, helping you intervene earlier and treat with greater confidence.

Veterinary criteria – IRIS AKI grading

Table 1: IRIS AKI Grading Criteria

AKI Grade	Blood Creatinine	Clinical Description
Grade I	<1.6 mg/dl (<140 µmol/l)	Nonazotemic AKI: a. Documented AKI: (historical, clinical, laboratory, or imaging evidence of AKI, clinical oliguria/anuria, volume responsiveness‡) and/or b. Progressive nonazotemic increase in blood creatinine: ≥ 0.3 mg/dl (≥ 26.4 µmol/l) within 48 h c. Measured oliguria (<1 ml/kg/h)# or anuna over 6 h
Grade II	1.7 – 2.5 mg/dl (141 – 220 µmol/l)	 Mild AKI: a. Documented AKI and static or progressive azotemia b. Progressive azotemic: increase in blood creatinine; ≥ 0.3 mg/dl ≥ 26.4 µmol/l) within 48 h) or volume responsiveness‡ c. Measured oliguria (<1 ml/kg/h)# or anuria over 6 h
Grade III	2.6 – 5.0 mg/dl (221 – 439µmol/l)	
Grade IV	5.1 – 10.0 mg/dl (440 – 880 µmol/l)	 Moderate to Severe AKI: a. Documented AKI and increasing severities of azotemia and functional renal failure
Grade V	>10.0 mg/dl (>880 µmol/l)	

(\pm Volume responsive is an increase in urine production to >1 ml/kg/h over 6 h; and/or decrease in serum creatinine to baseline over 48 h)

Injury

Risk

Mildly azotemic

Nonazotemic

Subgrade

Each grade of AKI is further subgraded as: 1. Non oliguric (NO) or oligo-anuric (O)

2. Requiring renal replacement therapy (RRT)

Failure

Moderately to severely azotemic

http://www.iriskidney.com/education/index.html

Soooo.... How do we <u>realistically</u> distinguish acute from chronic?

- +Mostly by deductive reasoning ...and often after the fact
 - + History
 - + Current lab results and lab trends (historical)
 - + Imaging
 - + Response to therapy (future lab trends)
 - + Intuition

Diagnosing kidney disease is more than documenting abnormal renal chemistries

https://www.iris-kidney.com/about

Hallmarks of AKI (vs. CKD)

+History and physical exam

- + Acute onset hours to days
- + Toxin exposure (lily, grapes, NSAIDs, anesthetics...)
- + Renomegaly, renal pain
- + Bradycardia/hypothermia (if severe hyperkalemia)

+Lab findings

- + Hyperkalemia
- + Urinary granular casts, normoglycemic glucosuria

+Imaging

- + Renomegaly in 70%
- + Hydroureter, pyelectasia, hydronephrosis
- + Ureteral calculi
- + Normal parathyroid gland

Back in the day...

More contemporary view...

Your CKD patient may have concurrent active kidney injury

Kidney function in health and disease is impacted by risk factors, injury, and outcomes

You suspect kidney disease: what next?

In the Attempt to determine definitive diagnosis and disease-specific therapy

GFR biomarkers fall short as early detectors of kidney disease

Performance of current renal "functional" biomarkers (estimates of GFR)

Categories of biomarkers and analytes to evaluate kidney function and injury

Indirect markers	Urine-based	Other important	Acute kidney
of function	markers	analytes	injury markers
Most specific (i.e. limited extrarenal effects): SDMA Creatinine Less Specific (i.e. more extrarenal effects): BUN Phosphorus	 Urinalysis Physical Chemical Sediment 	 Potassium Sodium/chloride Calcium Albumin/TP Hematocrit FGF-23 	 + Cystatin B + Urine Clusterin + NGAL

You need broad assessment to understand kidney health

What can we measure in clinical practice?

Glomerular Function How well are the kidneys clearing waste from the body (GFR)

> Creatinine, SDMA, BUN

Tubular Function

Important in solute & water management;

Urine concentration electrolytes, glucose, acidbase

Urine composition

Concentration/volume, pH; cellular and crystalline elements, infectious organisms, protein

Renal tubules are where the action *really* is

Tubular function

- The actual work of the kidney primarily takes place here.
 Filtering, reabsorbing, and secreting solutes and water
- + Impact urine concentration and what is excreted
- + Dysfunction can impact electrolytes, protein levels, glucose, acid-base balance
- + Captured in chemistry panel and urinalysis

Traditional renal *injury* markers are good, not great

- + Proteinuria
- + Hematuria, pyuria
- + Bacteriuria, + urine culture
- + Renal epithelial cells
- + Glucosuria (normoglycemia)
- + Cylindruria (casts)
- + Decreased USG

Injury markers are in urine

Functional markers are in blood

Take home message:

You can't assess kidney health without urine

The complete urinalysis should be part of the minimum data base Ur _

- + Three parts: physical, biochemical, and microscopic exam
- + Part of minimum data base for any patient, evaluation of PU/PD, diagnosis and follow-up if specific conditions
- + Urinalysis provides much more than an evaluation of the urinary system.

1/2 Wh Cel

9	\square	Μ

Urinalysis	2		N		
1/23/19	2:45 PM		Calleration	Free Creek	
TEST	RESULT		Collection	Free Catch	
White Blood Cells	3 /HPF	88	Color	Straw	
Red Blood Cells	<1 / HPF	88	Clarity	Slightly Clou	ypr
Bacteria, Cocci	None to rare	10 VA	Specific Gravity	1.015	
Bacteria, Rods	None to rare		оH	6.0	
Squamous Epithelial Cells	None to rare	88	Urine Protein	30	mg/dL
Non-Squamous Epithelial Cells	1 - 2 /HPF	RR	Glucose	neg	
Hyaline Casts	None to rare	88	Ketones	neg	
Non-Hyaline Casts	None to rare	88	Blood / Hemoglobin	neg	
Calcium Oxalate Dihydrate	None to rare	88	Bilirubin	neg	
Struvito Crystale		88	Urobilinogen	norm	
Ammonium Biurate Crystals	None to rare		Leukocyte Esterase	neg	
Bilirubin Crystals	None to rare	•			
Unclassified Crystals	None to rare)			
Images					
		- 14			102
2 Download	🛓 Dow	nload		2 Download	

Cystatin B fills a gap in our abilities to detect early and active renal injury

What is Cystatin B?

- + Member of cystatin family
 - + Protease inhibitors that help protect against leakage of proteolytic enzymes from lysosomes
 - + Trace amounts in the serum of healthy subjects
- + A small, intracellular protein
 - +11 kDa
 - + Ubiquitous in many cells, including proximal renal tubular cells
- + Freely filtered at the glomerulus
- + Increased urinary [cystatin B] indicates active, ongoing tubular injury
 - + Think of it as the ALT of the kidney

Cystatin B is a very small protein that is contained in the epithelial cells of the renal tubules

During **active or acute kidney injury**, renal tubular epithelial cells (responsible for secretion and reabsorption of solutes and water) can be damaged

Elevations of cystatin B *in the urine* can occur with or without increases in functional markers, **alerting to** earlier, ongoing, and unresolved kidney injury.

Current indirect markers of renal function vs. disease stage

Kidney injury markers are additive to current indirect functional markers

Traditional diagnostics only allow for case evaluation by functional markers

High/Abnormal

Functional Markers

> Creatinine BUN

Low/Normal

Addition of an injury marker provides better case discrimination and management

Urine Cystatin B

Abnormal renal functional markers reflect progression of injury to dysfunction <u>after</u> the fact:

Early recognition of renal injury is an opportunity to *change course of disease*

Two dogs ingested grapes Similar scenarios

Therefore, markers of tubular injury are earlier indicators of damage than functional markers

By up to 2 days...

Cystatin B has value with evaluating patients with CKD as well!

- + CKD progressive and irreversible
- + *Rate* of progression unpredictable
- + Cystatin B identifies active, progressive injury in dogs with CKD
- + Increased uCysB in dogs with IRIS Stage 1 CKD predicts rapid progression
- + Identifies which dogs need more frequent monitoring

y-intercepts calculated from inverse urinary cystatin B (uCysB) vs time

Uses for the IDEXX Cystatin B Test

The IDEXX Cystatin B Test Kidney *injury* marker **Urine-based test** Use in UNWELL dogs and cats Available at IDEXX Reference Laboratories **Included in select panels**

2

3

4

5

Causes of AKI include:

Cat	Dog
+Toxins (plants, chemotherapeutics)	 + Toxins (plants, chemotherapeutics, foods)
+Pyelonephritis	+Pyelonephritis
+Acute pancreatitis	+Acute pancreatitis
+Marked dehydration	+Marked dehydration
+Obstructive disorders	+Obstructive disorders
+Etiology unknown ≈30%	+Leptospirosis
	+Lyme nephritis
	+Congestive heart failure

AKI can develop in hospital: monitor and grade daily

- + Dehydration
- + Age > very young or old
- + Diuretic or nephrotoxic drug therapy
- + Hypokalemia or hypercalcemia
- + Sepsis
- + Congestive heart failure
- + Acute pancreatitis
- + Systemic hypertension
- + CKD

Avoid iatrogenic AKI!

Nephrotoxic drugs Hemodynamic instability Fluid overload

Fluid therapy for kidney disease: less may be more

- + Fluids are drugs avoid overdose
- + Fluids do not improve kidney function
- + Hypervolemia causes AKI and kills patients that already have it
- + Not every patient with kidney disease (acute or chronic) needs fluids!!!

Fluid therapy: keep it simple

+Type

- +Replacement fluid, e.g., LRS, to restore volume and hydration
- + Maintenance fluid, .e.g., 0.45% NaCl in 2.5% dextrose, for ongoing needs
- +Additives, e.g., KCI or glucose as needed

+Rate

+ Hypovolemia: 10-15 ml/kg dog, 5-10 ml/kg cat, over 15-30 min, repeat 1-2 times prn (+/- natural colloid)

+ Never add KCI to resuscitation fluids

+ Dehydration: % dehydration as decimal x BW (kg) x 1000 = ml to administer over 4-24 hr

Assessment of fluid therapy success is essential

- + Perfusion parameters: HR, CRT, mucous membranes, pulses, lactate, base excess
- +Body weight 2-4x/day: >5-10% increase slow or stop fluids
- +Lung auscultation: ≥ q12 hrs, more frequently if any changes in RR/RE

Fluid tips for AKI and CKD

AKI	CKD
 + Correct hypovolemia in <1hr + Correct dehydration 4-6 h4 	 + Not in stable CKD patients + SC fluids not standard care
 + Fluid-responsive AKI improvement within hours + If creatinine not normal w/in ≈12 hr not fluid responsive + Fluids not obligatory + No forced diuresis 	 + Correct hypovolemia + Correct dehydration + No forced diuresis + Trial if inappetence (subclinical dehydration)

If azotemia worsens with IV fluid therapy, consider *decreasing* fluid rate.

Especially if total daily volume exceeds maintenance or if weight gain.

Oliguria & anuria complicate AKI treatment

+ Increased risk of volume overload

- + Pathologic oliguria equals <1 ml/kg/hr of urine when volume, hydration, & BP are normal
 - + Expect physiologic oliguria with hypovolemia & dehydration
- + Furosemide only effective drug
 - + Loading dose 0.66 mg/kg IV then 0.66 mg/kg/hr by constant rate infusion (best)
 - + 2 mg/kg IV, no urine 20-40 minutes give 4 then 6 mg/kg hourly, then effective dose q6-8h
- + If urine production does not improve, strictly calculate patient ins and outs and closely monitor body weight

We're not done yet ?!

My dog ate some raisins.

3/1	4/24			3/14/24 3:32 AM
Chemistry <	2 AM		Collection	FREECATCH
III 🔨 Glucose 105	5 63 - 114 mg/dL		Color	DARK YELLOW
III 🔨 IDEXX SDMA e 10	0 - 14 µg/dL		Clarity	TURBID
		0	Specific Gravity	1.049 >= 1.030
IDEXX SDMA	10	0 - 14 μg/dL	рН	5.5 6.0 - 7.5
🛤 👀 Creatinine	1.0	0.5 - 1.5 mg/dL	Urine Protein	2+
🛤 🐝 BUN	18	9 - 31 mg/dL	Glucose	NEGATIVE
		0.00 ng/ml	Ketones	NEGATIVE
(Urine)		0 - 55 ng/me	Blood / Hemoglobin	3+
Potassium 5.1	4.0 - 5.4 mmol/L		Bilirubin	1+
n 🔨 Na: K Ratio 29	28 - 37		Urobilinogen	NORMAI
n 🔨 Chloride 114	4 108 - 119 mmol/L		White Blood Cells	0-2
(Bicarbonate)	13 - 27 mmol/L		Red Blood Cells	10.15
🛤 🖴 Anion Gap 17	11 - 26 mmol/L		Bacteria	10-15
Total Protein 5.5	5.5 - 7.5 g/dL	0	Additional	RARE COCCI <9/HPF
Albumin 3.0	2.7 - 3.9 g/dL		Bacteria	RARE RODS <9/HPF

3 y/o m/c Lab

- Confirmed raisin ingestion
- Amount/time prior to presentation uncertain
- Previously healthy

3 days later – treatment for possible UTI(?), and IV fluids for 48 hours

۵ (hemistry	3/17/24 1:07 AM				Urinalysis	3/17/24 1.07 AM	<u> </u>		
	IDEXX SDMA	а	8	0 - 14 µg/dL	Ξ,	Collection Vet Diagn Invest 17:223-2	FREECATC 231 (2005)	Ή		
88.5	 Creatinine 		1.2	0.5 - 1.5 mg/dL		C C				
88 N	A BUN		26	9 - 31 mg/dL		Canine 1	renal p	athology	y associated with grape or raisi	'n
AN 1	 IDEXX Cystatin (Urine) 	n B	<50	0 - 99 ng/mL			_	inges	stion: 10 cases	
	(offic)					Glucose	NEGATIV	All dog	s had degeneration or	
	Ratio	F 1	2 E 6 1 mg/dl		RR	Ketones	TRACE	necros	sis (or both) of proximal	
	Calcium	9.5	8.4 - 11.8 mg/dL			Blood / Hemoglobin	3+	renal to	ubules with basement	
m v.	Sodium	148	142 - 152 mmol/L			Bilirubin	1+	intact	and epithelial	
m	Potassium	5.1	4.0 - 5.4 mmol/L			Urobilinogen	NORMAL	regene	eration was observed in	
	Na: K Ratio	29	28 - 37			White Blood Cells	0-2	5 out c	of 10 cases.	
m	Chloride	114	108 - 119 mmol/L			Red Blood Cells	30-50			
III N	TCO2	25	13 - 27 mmol/L			Bacteria	NONE SEE	N		
	(Bicarbonate)					Additional Bacteria				
M	Anion Gap	14	11 - 26 mmol/L			Epithelial Cells	1+ (1-2)/HI	PF		
III V	Total Protein	5.1	5.5 - 7.5 g/dL			Mucus	NONE SEE	N		
m v.	Albumin	2.7	2.7 - 3.9 g/dL			Casts	NONE SEE	N		
III N	Globulin	2.4	2.4 - 4.0 g/dL			Crystals	NONE SEE	N		51

My dog is a little off and she is drinking a lot.

Hematology 2/11/24 12:33 AM	1 Jan		
🛤 👀 Hematocrit	35.0	38.3 - 56.5 %	
🛤 👭 Hemoglobin	10.9	13.4 - 20.7 g/dL	
m 🔨 MCV	78	59 - 76 fL	
🛤 👀 Reticulocytes	187	10 - 110 K/µL	
n 🔨 Platelets	38	143 - 448 K/µL	

Platelets appear markedly decreased (10,000-50,000/uL). Platelet Observations 💷 🔨 Neutrophils 6.164 2.94 - 12.67 K/µL III 🔨 Lymphocytes 2.208 1.06 - 4.95 K/µL 💷 🔨 Monocytes 0.552 0.13 - 1.15 K/µL III 🔨 Eosinophils 0.276 0.07 - 1.49 K/µL 38 143 - 448 K/µL III ··· Platelets Platelets appear markedly decreased (10,000-50,000/uL). Platelet Observations

SLIGHT

SLIGHT

Anisocytosis

88

Polychromasia

Lady

- 3-year-old FS Lab X
- Lives upstate NY
- Recent onset PU/PD
- A little "off"

Regenerative Anemia Marked Thrombocytopenia

۵ ۵	hemistry	2/11/24 12:33 AM	₽.		
	Glucose	85	63 - 114 mg/dL	11 V IDEXX SDMA 24 0 - 14 µg/dL	
	IDEXX SDMA	a <mark>24</mark>	0 - 14 µg/dL		
III. 55	Creatinine	3.2	0.5 - 1.5 mg/dL	M V. Creatinine 3.2 0.5 - 1.5 mg/dL	
	BUN	59	9 - 31 mg/dL	■	
				IDEXX Cystatin B >500 0 - 99 ng/mL	
88	BUN: Creatinine Ratio	18.4		(Urine)	
	Phosphorus	7.3	2.5 - 6.1 mg/dL		
III. 55	Calcium	9.0	8.4 - 11.8 mg/dL		
III. 55	Sodium	149	142 - 152 mmol/L	Azotemia + Increased Cys B	
III. 55	Potassium	5.6	4.0 - 5.4 mmol/L		
III. 55	Na: K Ratio	27	28 - 37		
	Chloride	121	108 - 119 mmol/L	Hypoalbuminemia	
III 55	TCO2 (Bicarbonate)	15	13 - 27 mmol/L	Hypercholesteremia	
	Anion Gap	19	11 - 26 mmol/L		
	Total Protein	3.7	5.5 - 7.5 g/dL		
III 55	Albumin	c 1.3	2.7 - 3.9 g/dL	■ •• Albumin 1.3 2.7 - 3.9 g/dL	
	Globulin	2.4	2.4 - 4.0 g/dL	■ •• Cholesterol 376 131 - 345 mg/dL	

	Urinalysis	2/11/24 12:33 AM			
	Collection	FREECATCH			
88	Color	YELLOW			
88	Specific Gr	avity 1.024	>= 1.030		
88	∽ pH	6.0	6.0 - 7.5		
88	Urine Prot	ein 🕂	:	· · · · · · · · · · · · · · · · · · ·	: :
	Glucose	NEGATIVE	•		
88	Ketones	NEGATIVE			
88	Blood / Hemoglobin	3+			1
88	Bilirubin	NEGATIVE			Inappropriate U
88	Urobilinogen	NORMAL			Proteinuria
88	White Blood Cells	2-5			
88	Red Blood Cells	0-2			Granular Casts
88	Bacteria	NONE SEEN			
~	Epithelial Cells	1+ (1-2)/HPF			

Azotemia Increased urinary cystatin B

Hypoalbuminemia Hypercholesteremia Inappropriate USG Proteinuria

Granular Casts (> 0-10 per/LPF)

Next Diagnostics Steps?

Marked proteinuria, negative leptospirosis titers

	Urine Creatinine	88.9	mg/dL			
	Urine Protein	969.7	mg/dL			
III V	Urine Protein: Creatinine Ratio	10.9		L. autu	imnalis	NEG @ 1:100
	Color	Yellow		L. brat	islava	NEG @ 1:100
				L. cani	cola	NEG @ 1:100
				L. gryp	potyphosa	NEG @ 1:100
			L. icter	ohaem-orrhagiae	NEG @ 1:100	
				L. por	iona	NEG @ 1:100

Acute/active tubular disease, significant glomerular component Lyme Nephritis possible diagnosis

U	Serology	2/11/24 12:33 AM
88	Heartworm Antigen	Negative
88	Ehrlichia spp.	Negative
88	Lyme (Borrelia burgdorferi)	Positive
U	Serology	2/15/24 2:45 AM
88	Lyme Quant C6 Antibody by ELISA	70 U/mL

Expand All Collapse All Lyme Quant C6 > 30 A positive Lyme C6 antibody result indicates infection and is not a result of Lyme vaccination. A Lyme Quant C6 antibody level > 30 U/mL is considered clinically significant and consistent with active Lyme disease.

NEXT STEP CONSIDERATIONS

Retest at 6 months using quantitative C6 test. SNAP 4Dx Plus test can be used but is likely to remain Lyme positive at 6 months and would require follow-up quantitative C6 testing to evaluate treatment response.

• 6 months: Lyme Quant C6 Antibody Test

Lyme positive dogs have a 43% increased risk of developing chronic kidney disease. A urinalysis (with UPC where indicated) is recommended to evaluate for proteinuria.

Urinalysis (with UPC where indicated)

LEARN MORE

CKD and Tick-Borne Disease, CAPC Maps, Additional Tick-Borne Disease Resources

IRIS Grading Criteria

Table 1: IRIS AKI Grading Criteria

AKI Grade	Blood Creatinine	Clinical Description		IDEXX SDMA		24	0 - 14 µg/dL	
		Nonazotemic AKI: a. Documented AKI: (historical, or imaging evidence of AKI, (Creatin	ine	3.2	0.5 - 1.5 mg/dL	
Grade I	<1.6 mg/dl (<140 µmol/l)			BUN	BUN		9 - 31 mg/dL	
		 b. Progressive nonazotemic incl creatinine: ≥ 0.3 mg/dl (≥ 26.4 c. Measured oliguria (<1 ml/kg/r 	III V.	IDEXX Cystatin B (Urine)		>500	0 - 99 ng/mL	
Grade II	1.7 – 2.5 mg/dl (141 – 220 μmol/l)	 Mild AKI: a. Documented AKI and static or progressive azotemia b. Progressive azotemic: increase in blood creatinine; ≥ 0.3 mg/dl ≥ 26.4 µmol/l) within 48 h),or volume responsiveness‡ c. Measured oliguria (<1 ml/kg/h)# or anuria over 6 h 		<mark>Injury</mark> Azoter	nic	IRIS AKI grad (Not enough i	e III nfo for sub-	
Grade III	2.6 – 5.0 mg/dl (221 – 439µmol/l)						grading)	
Grade IV	5.1 – 10.0 mg/dl (440 – 880 µmol/l)	Moderate to Severe AKI: a. Documented AKI and increasing severities of azotemia and functional renal failure		Azotemic				
Grade V	>10.0 mg/dl (>880 µmol/l)	L						

(\pm Volume responsive is an increase in urine production to >1 ml/kg/h over 6 h; and/or decrease in serum creatinine to baseline over 48 h)

Take Home

- Acute kidney injury and chronic kidney disease are a continuum
- A COMPLETE urinalysis is of UTMOST importance when evaluating kidney and systemic disorders
- Become familiar with renal biomarkers and their indications as well as their limitations; know your resources!
- IDEALLY, patients at risk for renal injury (stage I AKI) are identified and managed BEFORE azotemia develops
- Fluid therapy paradigms have changed...dramatically
- Newer kidney biomarkers have improved performance
 - SDMA is an earlier and more accurate measure of GFR
 - Urine cystatin B, a <u>urine</u> biomarker, is a marker specifically of ACTIVE renal tubular injury

HERMA

Questions?

Thank you!

nancy-sanders@idexx.com

